\qquad

1. Find the Prime Factorization of the number below. Write your answer on the line provided using exponents if needed. Do not use a calculator. Show your work.
2. Simplify the following problem. Do not use a calculator. Show your work.

$$
3(15-4)+5(7)-\left(20-18 \div 3^{2}\right)
$$

$$
64=
$$

\qquad

Use the Distributive property and write as a product using the GCF.
3. $55+35=$ \qquad
4. $18+12=$ \qquad
It takes 5 months to build 2 playgrounds. Find the unit rates for each and fill in the blanks. You may use a calculator.
5. For each month you can make \qquad playground.
6. For each playground it takes \qquad months.

Fill in the missing values in the ratio tables below. You may use a calculator
7.

35	7
45	

8.

	27
126	18

9.

21	25
	225

10.

78	
26	19

11. Change the following improper fractions to mixed numbers:
$73 / 7=$
$48 / 9=$
12. 7 bags for $\$ 97.16$

Find the price per bag.
You may use a calc. Show your thinking.
13. Circle the ratios that are equivalent to $3: 8$
$\underline{25}$
33
$\underline{27}$
$\underline{21}$
32
80
72
56
\qquad
You may use a calculator on problems 14-17. Show your thinking!
14. $4 / 5$ of the pets had their shots. If there were 6205 pets in the county, how many had their shots?
15. 984 people arrived early for the game. This is $3 / 4$ of the total. What was the total?

16. Solve this problem using the rate table to the right. Shannon earned $\$ 132.50$ for working 5 hours.
a. How much did Shannon earn per hour?
b. At this rate, how many hours will she have to work to earn $\$ 980.50$?
c. How much will he earn if she works for 39.5 hours?

17. For every 4 small popcorns sold at the theater there were 3 large sold. Complete the table below and answer the questions.

Small popcorns					
Large popcorns					

a. For every small popcorn that was sold \qquad large popcorn(s) were sold.
b. For each large popcorn that was sold \qquad small popcorn(s) were sold.
c. If 68 small popcorns were sold, how many large popcorns were sold? \qquad
d. If 84 large popcorns were sold, how many small popcorns were sold? \qquad

